Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54.162
Filtrar
1.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(4): 391-396, 2024 Apr 24.
Artículo en Chino | MEDLINE | ID: mdl-38644254

RESUMEN

Objective: To investigate the short-term efficacy and safety of cardiac contractility modulation (CCM) in patients with heart failure. Methods: This was a cross-sectional study of patients with heart failure who underwent CCM placement at the First Affiliated Hospital of Xinjiang Medical University from February to June 2022. With a follow-up of 3 months, CCM sensation, impedance, percent output, and work time were monitored, and patients were compared with pre-and 3-month postoperative left ventricular ejection fraction (LVEF) values, and 6-minute walk test distance and New York Heart Association (NYHA) cardiac function classification, and the occurrence of complications was recorded. Results: CCM was successfully implanted in all 9 patients. Seven(7/9) of them were male, aged (56±14) years, 3 patients had ischaemic cardiomyopathy and 6 patients had dilated cardiomyopathy. At 3-month postoperative follow-up, threshold was stable, sense was significantly lower at follow-up than before (right ventricle: (16.3±7.0) mV vs. (8.2±1.1) mV, P<0.05; local sense: (15.7±4.9) mV vs. (6.7±2.5) mV, P<0.05), and impedance was significantly lower at follow-up than before (right ventricle (846±179) Ω vs. (470±65) Ω, P<0.05, local sense: (832±246) Ω vs. (464±63) Ω, P<0.05). The CCM output percentage was (86.9±10.7) %, the output amplitude was (6.7±0.4) V, and the daily operating time was (8.6±1.0) h. LVEF was elevated compared to preoperative ((29.4±5.2) % vs. (38.3±4.3) %, P<0.05), the 6-minute walk test was significantly longer than before ((96.8±66.7)m vs. (289.3±121.7)m, P<0.05). No significant increase in the number of NYHA Class Ⅲ-Ⅳ patients was seen (7/9 vs. 2/9, P>0.05). The patient was not re-hospitalised for worsening heart failure symptoms, had no malignant arrhythmic events and experienced significant relief of symptoms such as chest tightness and shortness of breath. No postoperative complications related to pocket hematoma, pocket infection and rupture, electrode detachment, valve function impairment, pericardial effusion, or cardiac perforation were found. Conclusions: CCM has better short-term safety and efficacy in patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca , Contracción Miocárdica , Humanos , Masculino , Insuficiencia Cardíaca/fisiopatología , Persona de Mediana Edad , Femenino , Estudios Transversales , Resultado del Tratamiento , Anciano , Función Ventricular Izquierda , Volumen Sistólico
2.
BMC Cardiovasc Disord ; 24(1): 224, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664609

RESUMEN

BACKGROUND: Careful interpretation of the relation between phenotype changes of the heart and gene variants detected in dilated cardiomyopathy (DCM) is important for patient care and monitoring. OBJECTIVE: We sought to assess the association between cardiac-related genes and whole-heart myocardial mechanics or morphometrics in nonischemic dilated cardiomyopathy (NIDCM). METHODS: It was a prospective study consisting of patients with NIDCM. All patients were referred for genetic testing and a genetic analysis was performed using Illumina NextSeq 550 and a commercial gene capture panel of 233 genes (Systems Genomics, Cardiac-GeneSGKit®). It was analyzed whether there are significant differences in clinical, two-dimensional (2D) echocardiographic, and magnetic resonance imaging (MRI) parameters between patients with the genes variants and those without. 2D echocardiography and MRI were used to analyze myocardial mechanics and morphometrics. RESULTS: The study group consisted of 95 patients with NIDCM and the average age was 49.7 ± 10.5. All echocardiographic and MRI parameters of myocardial mechanics (left ventricular ejection fraction 28.4 ± 8.7 and 30.7 ± 11.2, respectively) were reduced and all values of cardiac chambers were increased (left ventricular end-diastolic diameter 64.5 ± 5.9 mm and 69.5 ± 10.7 mm, respectively) in this group. It was noticed that most cases of whole-heart myocardial mechanics and morphometrics differences between patients with and without gene variants were in the genes GATAD1, LOX, RASA1, KRAS, and KRIT1. These genes have not been previously linked to DCM. It has emerged that KRAS and KRIT1 genes were associated with worse whole-heart mechanics and enlargement of all heart chambers. GATAD1, LOX, and RASA1 genes variants showed an association with better cardiac function and morphometrics parameters. It might be that these variants alone do not influence disease development enough to be selective in human evolution. CONCLUSIONS: Combined variants in previously unreported genes related to DCM might play a significant role in affecting clinical, morphometrics, or myocardial mechanics parameters.


Asunto(s)
Cardiomiopatía Dilatada , Predisposición Genética a la Enfermedad , Fenotipo , Función Ventricular Izquierda , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Persona de Mediana Edad , Masculino , Femenino , Adulto , Estudios Prospectivos , Función Ventricular Izquierda/genética , Volumen Sistólico , Remodelación Ventricular/genética , Imagen por Resonancia Magnética , Fenómenos Biomecánicos , Variación Genética , Ecocardiografía , Contracción Miocárdica/genética , Estudios de Asociación Genética , Valor Predictivo de las Pruebas
3.
PLoS Comput Biol ; 20(4): e1011974, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635493

RESUMEN

Since the left ventricle (LV) has pressure (Plv) and volume (Vlv), we can define LV elastance from the ratio between Plv and Vlv, termed as "instantaneous elastance." On the other hand, end-systolic elastance (Emax) is known to be a good index of LV contractility, which is measured by the slope of several end-systolic Plv-Vlv points obtained by using different loads. The word Emax originates from the assumption that LV elastance increases during the ejection phase and attains its maximum at the end-systole. From this concept, we can define another elastance determined by the slope of isochronous Plv-Vlv points, that is Plv-Vlv points at a certain time after the ejection onset time by using different loads. We refer to this elastance as "load-dependent elastance." To reveal the relation between these two elastances, we used a hemodynamic model that included a detailed ventricular myocyte contraction model. From the simulation results, we found that the isochronous Plv-Vlv points lay in one line and that the line slope corresponding to the load-dependent elastance slightly decreased during the ejection phase, which is quite different from the instantaneous elastance. Subsequently, we analyzed the mechanism determining these elastances from the model equations. We found that instantaneous elastance is directly related to contraction force generated by the ventricular myocyte, but the load-dependent elastance is determined by two factors: one is the transient characteristics of the cardiac cell, i.e., the velocity-dependent force drops characteristics in instantaneous shortening. The other is the force-velocity relation of the cardiac cell. We also found that the linear isochronous pressure-volume relation is based on the approximately linear relation between the time derivative of the cellular contraction force and the cellular shortening velocity that results from the combined characteristics of LV and aortic compliances.


Asunto(s)
Ventrículos Cardíacos , Contracción Miocárdica , Sístole , Hemodinámica , Miocitos Cardíacos
4.
Catheter Cardiovasc Interv ; 103(6): 943-948, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577955

RESUMEN

BACKGROUND: Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear. AIMS: To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO. METHODS: In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging. RV pressures, RV afterload (arterial elastance [Ea]), PA compliance, RV contractility (end-systolic elastance [Ees]), RV-to-PA (RV-PA) coupling (Ees/Ea), and RV diastolic stiffness (end-diastolic elastance [Eed]) were analyzed and compared to normal values from the literature. RESULTS: In all TGA patients (mean age 12 ± 3 years), RV afterload (Ea) and RV pressures were increased whereas PA compliance was reduced. RV contractility (Ees) was decreased resulting in RV-PA uncoupling. RV diastolic stiffness (Eed) was increased. CMR-derived RV volumes, mass, and ejection fraction were preserved. CONCLUSION: Unilateral PA stenosis results in an increased RV afterload in TGA patients after ASO. RV remodeling and function remain within normal limits when analyzed by CMR but RV pressure-volume loop analysis shows impaired RV diastolic stiffness and RV contractility leading to RV-PA uncoupling.


Asunto(s)
Operación de Switch Arterial , Cateterismo Cardíaco , Arteria Pulmonar , Estenosis de Arteria Pulmonar , Transposición de los Grandes Vasos , Función Ventricular Derecha , Humanos , Transposición de los Grandes Vasos/fisiopatología , Transposición de los Grandes Vasos/cirugía , Transposición de los Grandes Vasos/complicaciones , Transposición de los Grandes Vasos/diagnóstico por imagen , Estudios Retrospectivos , Estenosis de Arteria Pulmonar/fisiopatología , Estenosis de Arteria Pulmonar/diagnóstico por imagen , Estenosis de Arteria Pulmonar/etiología , Niño , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Masculino , Femenino , Operación de Switch Arterial/efectos adversos , Adolescente , Presión Ventricular , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/diagnóstico por imagen , Resultado del Tratamiento , Contracción Miocárdica , Adaptabilidad , Volumen Sistólico , Rigidez Vascular
5.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658324

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Asunto(s)
Arritmias Cardíacas , Distrofina , Contracción Miocárdica , Animales , Masculino , Distrofina/genética , Distrofina/deficiencia , Ratones , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Ratones Endogámicos C57BL
6.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38516812

RESUMEN

Interconnected mechanisms of ischemia and reperfusion (IR) has increased the interest in IR in vitro experiments using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We developed a whole-cell computational model of hiPSC-CMs including the electromechanics, a metabolite-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and an oxygen dynamics formulation to investigate IR mechanisms. Moreover, we simulated the effect and action mechanism of levosimendan, which recently showed promising anti-arrhythmic effects in hiPSC-CMs in hypoxia. The model was validated using hiPSC-CM and in vitro animal data. The role of SERCA in causing relaxation dysfunction in IR was anticipated to be comparable to its function in sepsis-induced heart failure. Drug simulations showed that levosimendan counteracts the relaxation dysfunction by utilizing a particular Ca2+-sensitizing mechanism involving Ca2+-bound troponin C and Ca2+ flux to the myofilament, rather than inhibiting SERCA phosphorylation. The model demonstrates extensive characterization and promise for drug development, making it suitable for evaluating IR therapy strategies based on the changing levels of cardiac metabolites, oxygen and molecular pathways.


Asunto(s)
Calcio , Simulación por Computador , Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Simendán , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Simendán/farmacología , Simendán/uso terapéutico , Contracción Miocárdica/efectos de los fármacos , Calcio/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Oxígeno/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Animales , Modelos Biológicos
7.
Int J Cardiovasc Imaging ; 40(4): 907-920, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427272

RESUMEN

According to updated Lake-Louise Criteria, impaired regional myocardial function serves as a supportive criterion in diagnosing myocarditis. This study aimed to assess visual regional wall motional abnormalities (RWMA) and novel quantitative regional longitudinal peak strain (RLS) for risk stratification in the clinical setting of myocarditis. In patients undergoing CMR and meeting clinical criteria for suspected myocarditis global longitudinal strain (GLS), late gadolinium enhancement (LGE), RWMA and RLS were assessed in the anterior, septal, inferior, and lateral regions and correlated to the occurrence of major adverse cardiac events (MACE), including heart failure hospitalization, sustained ventricular tachycardia, recurrent myocarditis, and all-cause death. In 690 consecutive patients (age: 48.0 ± 16.0 years; 37.7% female) with suspected myocarditis impaired RLS was correlated with RWMA and LV-GLS but not with the presence of LGE. At median follow up of 3.8 years, MACE occurred in 116 (16.8%) patients. Both, RWMA and RLS in anterior-, septal-, inferior-, and lateral- locations were univariately associated with outcomes (all p < 0.001), but not after adjusting for clinical characteristics and LV-GLS. In the subgroup of patients with normal LV function, RWMA were not predictive of outcomes, whereas septal RLS had incremental and independent prognostic value over clinical characteristics (HRadjusted = 1.132, 95% CI 1.020-1.256; p = 0.020). RWMA and RLS can be used to assess regional impairment of myocardial function in myocarditis but are of limited prognostic value in the overall population. However, in the subgroup of patients with normal LV function, septal RLS represents a distinctive marker of regional LV dysfunction, offering potential for risk-stratification.


Asunto(s)
Imagen por Resonancia Cinemagnética , Miocarditis , Valor Predictivo de las Pruebas , Función Ventricular Izquierda , Humanos , Femenino , Masculino , Persona de Mediana Edad , Miocarditis/fisiopatología , Miocarditis/diagnóstico por imagen , Miocarditis/mortalidad , Miocarditis/complicaciones , Adulto , Pronóstico , Factores de Riesgo , Medición de Riesgo , Factores de Tiempo , Estudios Retrospectivos , Medios de Contraste , Contracción Miocárdica , Recurrencia , Anciano , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/mortalidad , Reproducibilidad de los Resultados
8.
J Pharmacol Exp Ther ; 389(2): 174-185, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38531640

RESUMEN

There is a debate on whether H1-histamine receptors can alter contractility in the mammalian heart. We studied here a new transgenic mouse model where we increased genetically the cardiac level of the H1-histamine receptor. We wanted to know if histamine could augment or decrease contractile parameters in mice with cardiac-specific overexpression of human H1-histamine receptors (H1-TG) and compared these findings with those in littermate wild-type mice (WT). In H1-TG mice, we studied the presence of H1-histamine receptors by autoradiography of the atrium and ventricle using [3H]mepyramine. The messenger RNA for human H1-histamine receptors was present in the heart from H1-TG and absent from WT. Using in situ hybridization, we noted mRNA for the human H1-histamine receptor in cardiac cells from H1-TG. We noted that histamine (1 nM-10 µM) in paced (1 Hz) left atrial preparations from H1-TG, exerted at each concentration of histamine initially reduced force of contraction and then raised contractile force. Likewise, in spontaneously beating left atrial preparations from H1-TG, we noted that histamine led to a transient reduction in the spontaneous beating rate followed by an augmentation in the beating rate. The negative inotropic and chronotropic and the positive inotropic effects on histamine in isolated atrial muscle strips from H1-TG were attenuated by the H1-histamine receptor antagonist mepyramine. Histamine failed to exert an increased force or reduce the heartbeat in atrial preparations from WT. We concluded that stimulation of H1-histamine-receptors can decrease and then augment contractile force in the mammalian heart and stimulation of H1-histamine receptors exerts a negative chronotropic effect. SIGNIFICANCE STATEMENT: We made novel transgenic mice with cardiomyocyte-specific high expressional levels of the human H1-histamine receptor to contribute to the clarification of the controversy on whether H1-histamine receptors increase or decrease contractility and beating rate in the mammalian heart. From our data, we conclude that stimulation of H1-histamine receptors first decrease and then raise contractile force in the mammalian heart but exert solely negative chronotropic effects.


Asunto(s)
Histamina , Contracción Miocárdica , Humanos , Ratones , Animales , Ratones Transgénicos , Histamina/farmacología , Pirilamina/farmacología , Corazón , Receptores Histamínicos , Atrios Cardíacos , Frecuencia Cardíaca , Receptores Histamínicos H1/genética , Mamíferos
11.
Cell Calcium ; 119: 102873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537433

RESUMEN

Calcium signaling is a critical process required for cellular mechanisms such as cardiomyocyte contraction. The inability of the cell to properly activate or regulate calcium signaling can lead to contractile dysfunction. In isolated cardiomyocytes, calcium signaling has been primarily studied using calcium fluorescent dyes, however these dyes have limited applicability to whole organs. Here, we crossed the Salsa6f mouse which expresses a genetically encoded ratiometric cytosolic calcium indicator with a cardiomyocyte specific inducible cre to temporally-induce expression and studied cytosolic calcium transients in isolated cardiomyocytes and modified Langendorff heart preparations. Isolated cardiomyocytes expressing Salsa6f or Fluo-4AM loaded were compared. We also crossed the Salsa6f mouse with a floxed Polycystin 2 (PC2) mouse to test the feasibility of using the Salsa6f mouse to measure calcium transients in PC2 heterozygous or homozygous knock out mice. Although there are caveats in the applicability of the Salsa6f mouse, there are clear advantages to using the Salsa6f mouse to measure whole heart calcium signals.


Asunto(s)
Calcio , Miocitos Cardíacos , Ratones , Animales , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Señalización del Calcio/fisiología , Colorantes Fluorescentes/metabolismo , Contracción Miocárdica/fisiología
12.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433304

RESUMEN

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/metabolismo , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Señalización del Calcio , Factores de Tiempo , Acoplamiento Excitación-Contracción , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Terapia por Estimulación Eléctrica/instrumentación , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo
13.
JCI Insight ; 9(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483507

RESUMEN

The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.


Asunto(s)
Bencilaminas , Miocardio , Sarcómeros , Solubilidad , Uracilo/análogos & derivados , Animales , Sarcómeros/metabolismo , Miocardio/metabolismo , Ratones , Miosinas/metabolismo , Pliegue de Proteína , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Cardiomiopatía Hipertrófica/metabolismo , Contracción Miocárdica , Humanos , Masculino
14.
Physiol Rep ; 12(6): e15974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491822

RESUMEN

Patients undergoing cardiopulmonary bypass procedures require inotropic support to improve hemodynamic function and cardiac output. Current inotropes such as dobutamine, can promote arrhythmias, prompting a demand for improved inotropes with little effect on intracellular Ca2+ flux. Low-dose carbon monoxide (CO) induces inotropic effects in perfused hearts. Using the CO-releasing pro-drug, oCOm-21, we investigated if this inotropic effect results from an increase in myofilament Ca2+ sensitivity. Male Sprague Dawley rat left ventricular cardiomyocytes were permeabilized, and myofilament force was measured as a function of -log [Ca2+ ] (pCa) in the range of 9.0-4.5 under five conditions: vehicle, oCOm-21, the oCOm-21 control BP-21, and levosimendan, (9 cells/group). Ca2+ sensitivity was assessed by the Ca2+ concentration at which 50% of maximal force is produced (pCa50 ). oCOm-21, but not BP-21 significantly increased pCa50 compared to vehicle, respectively (pCa50 5.52 vs. 5.47 vs. 5.44; p < 0.05). No change in myofilament phosphorylation was seen after oCOm-21 treatment. Pretreatment of cardiomyocytes with the heme scavenger hemopexin, abolished the Ca2+ sensitizing effect of oCOm-21. These results support the hypothesis that oCOm-21-derived CO increases myofilament Ca2+ sensitivity through a heme-dependent mechanism but not by phosphorylation. Further analyses will confirm if this Ca2+ sensitizing effect occurs in an intact heart.


Asunto(s)
Monóxido de Carbono , Miofibrillas , Ratas , Animales , Humanos , Masculino , Monóxido de Carbono/farmacología , Contracción Miocárdica , Ratas Sprague-Dawley , Miocitos Cardíacos , Hemo , Calcio
15.
Int J Cardiovasc Imaging ; 40(4): 801-809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38376720

RESUMEN

Recently, a classification with four types of septal longitudinal strain patterns was described using echocardiography, suggesting a pathophysiological continuum of left bundle branch block (LBBB)-induced left ventricle (LV) remodeling. The aim of this study was to assess the feasibility of classifying these strain patterns using cardiovascular magnetic resonance (CMR), and to evaluate their association with LV remodeling and myocardial scar. Single center registry included LBBB patients with septal flash (SF) referred to CMR to assess the cause of LV systolic dysfunction. Semi-automated feature-tracking cardiac resonance (FT-CMR) was used to quantify myocardial strain and detect the four strain patterns. A total of 115 patients were studied (age 66 ± 11 years, 57% men, 28% with ischemic heart disease). In longitudinal strain analysis, 23 patients (20%) were classified in stage LBBB-1, 37 (32.1%) in LBBB-2, 25 (21.7%) in LBBB-3, and 30 (26%) in LBBB-4. Patients at higher stages had more prominent septal flash, higher LV volumes, lower LV ejection fraction, and lower absolute strain values (p < 0.05 for all). Late gadolinium enhancement (LGE) was found in 55% of the patients (n = 63). No differences were found between the strain patterns regarding the presence, distribution or location of LGE. Among patients with LBBB, there was a good association between strain patterns assessed by FT-CMR analysis and the degree of LV remodeling and LV dysfunction. This association seems to be independent from the presence and distribution of LGE.


Asunto(s)
Bloqueo de Rama , Estudios de Factibilidad , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Sistema de Registros , Función Ventricular Izquierda , Remodelación Ventricular , Humanos , Masculino , Femenino , Bloqueo de Rama/fisiopatología , Bloqueo de Rama/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Contracción Miocárdica , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Volumen Sistólico , Reproducibilidad de los Resultados , Fenómenos Biomecánicos , Interpretación de Imagen Asistida por Computador , Fibrosis , Estudios Retrospectivos
17.
Cardiovasc Toxicol ; 24(2): 85-101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356081

RESUMEN

Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.


Asunto(s)
Hipotermia , Metales Pesados , Humanos , Mitofagia , Respuesta al Choque por Frío , Hipotermia/metabolismo , Metalotioneína , Contracción Miocárdica , Miocitos Cardíacos , Autofagia , Metales Pesados/metabolismo , Metales Pesados/farmacología
18.
Ultrasound Med Biol ; 50(5): 768-774, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38413295

RESUMEN

OBJECTIVE: The deviation of the power-weighted center of the echo signal from the geometric center within the velocity estimation window for calculating strain rate (SR) causes an estimation error. This study aimed to confirm whether an erroneous multilayer pattern in the SR distribution of the left ventricular wall could be corrected by considering the power-weighted center of the echo signal. METHODS: The SR distributions were measured locally in the transmural direction around the pre-ejection and early diastolic phases in healthy volunteers. The estimation error related to the power-weighted center of the echo signal was corrected using a previously proposed method, and the effectiveness of the correction was confirmed based on the accuracy of the estimated myocardial displacement. RESULTS: The SR distribution in early diastole was observed as multilayers of low- and high-amplitude negative SRs. However, this multilayer pattern disappeared after correction. In the pre-ejection phase, multilayers of positive and negative SRs were observed in the SR distributions with and without correction. This correction was sufficiently effective in accurately tracking the local peak of the echo signal. CONCLUSION: The multilayer pattern of low- and high-amplitude positive or negative SRs is caused by estimation errors related to the power-weighted center of the echo signal. The multilayer pattern of positive and negative SRs might not be caused by these errors and might relate to the actual change in myocardial thickness because the estimation errors do not convert the negative (positive) SR to positive (negative) in a homogeneous negative (positive) SR distribution.


Asunto(s)
Ventrículos Cardíacos , Contracción Miocárdica , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Diástole , Miocardio , Función Ventricular Izquierda
19.
Sci Rep ; 14(1): 3269, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332169

RESUMEN

Continuous monitoring of cardiac motions has been expected to provide essential cardiac physiology information on cardiovascular functioning. A fiber-optic micro-vibration sensing system (FO-MVSS) makes it promising. This study aimed to explore the correlation between Ballistocardiography (BCG) waveforms, measured using an FO-MVSS, and myocardial valve activity during the systolic and diastolic phases of the cardiac cycle in participants with normal cardiac function and patients with congestive heart failure (CHF). A high-sensitivity FO-MVSS acquired continuous BCG recordings. The simultaneous recordings of BCG and electrocardiogram (ECG) signals were obtained from 101 participants to examine their correlation. BCG, ECG, and intracavitary pressure signals were collected from 6 patients undergoing cardiac catheter intervention to investigate BCG waveforms and cardiac cycle phases. Tissue Doppler imaging (TDI) measured cardiac time intervals in 51 participants correlated with BCG intervals. The BCG recordings were further validated in 61 CHF patients to assess cardiac parameters by BCG. For heart failure evaluation machine learning was used to analyze BCG-derived cardiac parameters. Significant correlations were observed between cardiac physiology parameters and BCG's parameters. Furthermore, a linear relationship was found betwen IJ amplitude and cardiac output (r = 0.923, R2 = 0.926, p < 0.001). Machine learning techniques, including K-Nearest Neighbors (KNN), Decision Tree Classifier (DTC), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and XGBoost, respectively, demonstrated remarkable performance. They all achieved average accuracy and AUC values exceeding 95% in a five-fold cross-validation approach. We establish an electromagnetic-interference-free and non-contact method for continuous monitoring of the cardiac cycle and myocardial contractility and measure the different phases of the cardiac cycle. It presents a sensitive method for evaluating changes in both cardiac contraction and relaxation in the context of heart failure assessment.


Asunto(s)
Balistocardiografía , Insuficiencia Cardíaca , Humanos , Balistocardiografía/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Corazón , Electrocardiografía/métodos , Contracción Miocárdica/fisiología
20.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338853

RESUMEN

Worsening heart failure (WHF) is a severe and dynamic condition characterized by significant clinical and hemodynamic deterioration. It is characterized by worsening HF signs, symptoms and biomarkers, despite the achievement of an optimized medical therapy. It remains a significant challenge in cardiology, as it evolves into advanced and end-stage HF. The hyperactivation of the neurohormonal, adrenergic and renin-angiotensin-aldosterone system are well known pathophysiological pathways involved in HF. Several drugs have been developed to inhibit the latter, resulting in an improvement in life expectancy. Nevertheless, patients are exposed to a residual risk of adverse events, and the exploration of new molecular pathways and therapeutic targets is required. This review explores the current landscape of WHF, highlighting the complexities and factors contributing to this critical condition. Most recent medical advances have introduced cutting-edge pharmacological agents, such as guanylate cyclase stimulators and myosin activators. Regarding device-based therapies, invasive pulmonary pressure measurement and cardiac contractility modulation have emerged as promising tools to increase the quality of life and reduce hospitalizations due to HF exacerbations. Recent innovations in terms of WHF management emphasize the need for a multifaceted and patient-centric approach to address the complex HF syndrome.


Asunto(s)
Insuficiencia Cardíaca , Calidad de Vida , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Hospitalización , Contracción Miocárdica , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA